Introduction to ARES

The global market for energy storage (already 2% of generation capacity in just the US) is growing rapidly with the growth of renewable energy.  Solar, wind, and other renewable energy generation are fundamentally intermittent and their aggregate peak output rarely matches that of peak system loads, delivering on annual an average of less than 30% of their rated capacity into the electrical grid. Without energy storage technology, a significant amount of energy produced is simply lost.
Advanced Rail Energy Storage uses a train rushing down a mountain to produce electricity when needed. Credit: Popular Mechanics
Advanced Rail Energy Storage uses a train rushing down a mountain to produce electricity when needed. Credit: Popular Mechanics
Advanced Rail Energy Storage (ARES), based in Santa Barbara, California uses modified railway cars rolling downhill on a specially built track to release energy and off-peak electricity to pull the cars to the top of a hill. The ARES system requires specific topography but its founder and primary inventor, William Peitzke, says ARES uses 100-year-old technology which delivers more power for the same height differential with a round-trip efficiency—the ratio of energy out to energy in—of more than 85%, compared with 70-75% for pumped-storage hydropower (PSH). Furthermore, ARES has a much wider geographic scope than PSH since it does not require water and has far less negative environmental impact (no need for drilling or flooding). Peitzke co-founded the company with San Diego engineer Matt Brown and hired James Kelly, a retired Southern California Edison executive, as CEO. ARES has raised $25 million as of July 2015. ARES CEO James Kelly said, "The basic concept is how do I move mass with the force of gravity? It finally dawned on us to use 100-year-old technology, and that's electric railroads, and to add modern digital control systems to automate electric railroads for storage." Francesca Cava, Chief Operating Officer of ARES, said, "Gravity energy storage has been around for a while but no one has thought of combining railway technology with it."

What are flywheels? [caption id="attachment_285" align="aligncenter" width="625"]A 500 kW flywheel being lowered into the vault at flywheel company Temporal Power’s manufacturing facility to undergo testing (Image: Temporal Power). A 500 kW flywheel being lowered into the vault at flywheel company Temporal Power’s manufacturing facility to undergo testing (Image: Temporal Power).[/caption] Lux Research, an independent firm that assesses emerging technologies, predicts that the global energy storage market will grow from a $200 million industry in 2012 to an $11 billion giant by 2017. Chemical batteries have recently made some strides forward and many more companies have jumped on board. However, the most promising way of storing energy for the future might come from a more unlikely source, and one that far predates any battery: the flywheel. A flywheel is nothing more than a wheel on an axle which stores and regulates energy by spinning continuously. The device is one of humanity’s oldest and most familiar technologies first used in the potter’s wheel 6000 years ago as a stone tablet with enough mass to rotate smoothly between kicks of a foot pedal. Leonardo da Vinci invented one with a variable moment of inertia. It was an essential component in the great machines that brought on the industrial revolution. Today, flywheels are under the hood of every car – regulating the strokes of pistons. Interested in more of my posts and other writings outside of Impact Hound? Follow me on Twitter: @shenge86



Powered by WordPress Popup